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ARTICLE INFO ABSTRACT

Keywords: This study aims to investigate the effect of magnetic ordering on spinodal decomposition behavior in the Fe-Cr
Fe-Cr system using graphics processing unit(GPU) parallelization. We modify the CALPHAD-type free energy to re-
Spinodal decomposition move its critical behavior near the paramagnetic-ferromagnetic transition. We solve the Cahn-Hilliard equation
Phase-field modeling using a semi-implicit Fourier spectral method, parallelizing the code to run on a GPU via compute unified device
architecture and OpenMP. We find that the GPU parallelization gives better performance than that of OpenMP
when using fast Fourier transforms to solve the Cahn-Hilliard equation. We conduct nine sets of simulations to
examine the effect of magnetic ordering, and we found that it alters the interfacial energy between Cr-rich and
Cr-depleted phases, equilibrium concentrations, and energy barrier for phase transformations. We apply a phase-
field method to examine in detail how these changes affect the microstructural evolution, quantitatively eval-
uating the microstructures obtained in terms of the precipitate number density, average phase area, and phase

boundary density along certain auxiliary lines to analyze the effects of magnetic ordering.

1. Introduction

Several previous studies have shown that the o’ phase plays an
important role in the hardening/embrittlement of ferritic steels [1-3];
therefore, understanding the spinodal decomposition behavior of the
Fe-Cr system has been an important topic in studying the integrity of
structural materials [1-9]. The free energy of the Fe-Cr system can be
assessed quantitatively using CALPHAD approach [10], and has been
used as an input for the phase-field modeling of spinodal decomposition
in the Fe-Cr system [5-7].

Herein, we analyze the effect of magnetic ordering on the micro-
structural evolution of the Fe-Cr system using a graphics processing unit
(GPU)-accelerated phase-field method. Since this system can undergo
magnetic ordering transitions [10] depending on the Cr composition at
T =700 K, we quantify the effect of magnetic ordering on a single
crystal using the phase-field method. The Fe-Cr system is considered to
be a prototype for various ferritic/martensitic steel alloys; therefore,
examining the magnetic ordering’s effect on its microstructural evolu-
tion can provide a guide line for alloy design from the viewpoint of
microstructural optimization.

In addition, we also consider two different computational tech-
nique. Since the quantitative prediction of the real material system is
highly computationally expensive, we have implement a parallel
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computing scheme based on the compute unified device architecture
(CUDA) to improve computational efficiency [11], comparing it with
parallelized code using CUDA and OpenMP [12] when solving the
Cahn-Hilliard diffusion equation [13] using a semi-implicit spectral
method [14].

Although CUDA has previously been applied to the phase-field
method, it was used to create an explicit solver [15,16]. Herein, we
instead use it to implement a semi-implicit spectral method and com-
pare the performance of OpenMP- and CUDA-accelerated code. Results
will help to guide any researchers aiming to solve the Cahn-Hilliard
equation using fast Fourier transform.

2. CALPHAD-based phase-field method
2.1. Semi-implicit Fourier spectral method

We simulate the evolution of the Cr concentration field by solving
the following Cahn-Hilliard equation [17]:

de(r, 1) _ V,flV‘[M(r, [)‘V(EF(r, t))]

ot dc (@)

Foe = {VL [f(c) + %K(Vc)z]}dV @

Received 29 April 2019; Received in revised form 15 June 2019; Accepted 15 June 2019

Available online 01 July 2019
0927-0256/ © 2019 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2019.109088
https://doi.org/10.1016/j.commatsci.2019.109088
mailto:kunok.chang@khu.ac.kr
https://doi.org/10.1016/j.commatsci.2019.109088
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2019.109088&domain=pdf

J. Lee and K. Chang

Computational Materials Science 169 (2019) 109088

Temperature = 700K

221 T

T T T T

;
[ Free enery

Without magnetic ordering effect
With magnetic ordering effect

|

<22

-22.5

<23

Free energy (KJ)

235
24

QN
\
\\\\\\\\\\\\

=245 |-

A -
g T T ////////////////\//\% SN \\\\\\\\\\\\\“

\\\\\X%\
— \@@\\\ \ \\\\\
Q \\x\\\\\\\\\\\ \
\\\\\\\‘\\\\\\\\\\\\\,\\\

a5 L L L L
2 0 0.1 02 03 0.4

0.5

0.6 0.7

Composition of Cr

(a) Plot of free energy with respect to the whole

Temperature = 700k

-22.38908

-22.38910

-22.38912

-22.38914

Free energy (k)

-22.38916

P
-22.38918 L

T T
— With magnetic ordering effect

0.56560 0.56561

0.56562 0.56563 0.56564

Composition of Cr

(b) Plot of free energy with respect to the Cr concentration in the vicinity of ¢ = 0.5652

Fig. 1. Free energy curves for the Fe-Cr system at 700 K with and without considering magnetic ordering effects. The equilibrium Cr concentrations without magnetic
ordering effects are c., = 0.18 and 0.82, and considering such effects changes these to ¢, = 0.11 and 0.92.

where c is the Cr concentration, x is the gradient energy coefficient, and
F(r, t) and f(c) are the system’s molar free energy and molar chemical
free energy, respectively. f(c) is discussed in the following section.

The molar free energy F (r, t) in Eq. (1) is given by Eq. (2), whereas
the mobility M (r, t) is given by Darken’s equation [18,19]:

M, £) = Vi[cMFe +(1 = Mg el — o)

m

3

where Mg, and Mc, are the mobilities of the Fe and Cr atom, respec-
tively. The solutes’ diffusivities are given (in units of m?/s) by [7]

Dpe = 1.0 X 10‘4exp(—w)
RT @
D¢, = 2.0 X 10‘Sexp(—w)
RT )
and the gradient coefficient x is given by [13]
1
k= grOZLFeCr ©

where 1, is the lattice parameter and Lg.c, is the regular solution in-
teraction parameter [13].

To efficiently solve Eq. (1), we implemented a semi-implicit Fourier
spectral scheme [14] by expanding the formula as follows. For the ease
of convenience, we introduced

¢(x, 1) = [eMp, + (1 — )M ]c(1 — ¢) 7)
and then rearranged Eq. (1) as

Ge(r, ) _ o @ o,

= V-¢(r, t)v[—éc xVic(r, t)] @)

ac (k, t)

ot (C)]
where k = (k;, k) is the reciprocal vector in the Fourier space of mag-
nitude k = \/k? + k# and ¢ (k, ) and {%}}C are the Fourier transforms of

F©

= ik-{¢(r, D[ik"({ 3 Yo + 1k"%E (K, )]

c(r, t) and %, respectively. Then, we applied an explicit Euler Fourier
spectral treatment to this equation, yielding
n
+ k' (K, t)]
k' )

=mkmﬁwui@}
Sc
(10)

acr+i(k, t) — ¢ (k, t)
At

SO

9 ()
dc

Atik-{$(x, 1) X [ik'({ }k + kT (K :))] b

(1 + AAtKKY)

¢k, t) =¢n(k, t) +
1mn

where

A= %[max(¢(r, 1) + min((x, )] 12)

2.2. Modified CALPHAD-type free energy

The molar chemical free energy f(c) in Eq. (2) is given by [20]
fle)=Q = ¢)G% + cGS + Lrecrc(1 — ¢) + RT (clnc + (1 — ¢)In(1 — ¢)]
+ G (J/mol) (13)

where G, and G, are the molar Gibbs free energies for pure elemental
Fe and Cr, respectively, L., is the interaction parameter between Fe
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and Cr, R (= 8.314J/mol-K) is the gas constant, T is the system’s abso-
lute temperature, which is 700 K herein, and G, is the molar Gibbs free
energy of the magnetic ordering effect [10]. These were calculated as
follows:

+1225.7 4+ 124.134 X T — 23.5143 X T X InT — 0.00439752 X T?
— 5.89269 X 1078 x T3 + 77358.5 x T~!
Gl = —8856.94 + 157.48 X T — 26.908 X T x InT + 0.00189435 x T?

— 1.47721 X 107° x T3 + 139250 X T~!
Lgecr = +20500 — 9.68T

Gn = RTIn(B + 1)A(7), (J/mol)

0
GFe

where f8 is the atomic magnetic moment, calculated in terms the Bohr
magneton as § = 2.22(1 — ¢) — 0.008¢ — 0.85c¢(1 — ¢). The function A ()
is expressed as the following polynomial:

A(1)=—0.905307"1 + 1.0 — 0.15373 — 6.8 X 1073¢°
—1.53 X 1073¢1%(7 < 1) — 0.06417775 — 2.037 X 107315
— 4278 X 107*25(t > 1) 14)

where 7= T/T, is critical magnetic ordering temperature given by
T, = 1043(1 — ¢) — 311.5¢ + ¢(1 — ¢)[1650 + 550(2c — 1)] (in K).

Eq. (2) includes a magnetic ordering contribution to the free energy.
Some previous studies have neglected magnetic ordering effects [5,9].
However, as shown in Fig. 1, the Fe-Cr system’s free energy at 700 K
varies substantially depending on whether or not magnetic ordering
effects are included.

To investigate the effect of magnetic ordering, we performed nine
sets of simulations. Herein, we neglected the G,, term in Eq. (13) when
simulating microstructural evolution without such effects.

To increase the computational efficiency, we used dimensionless
values herein. Specifically, our simulations used the normalized values
r* =r/l, V¥ = 3/3(x/l), t* = tD/1?, M* = V,,RT*M/Df*(c) = f (¢)/(RT"),
and x* = «/(RT*1%) with D = 10~%*m?/s[7], T* = 900K, and | = 2.856 A,
where is a, value in Eq. (6). Without magnetic ordering effects, the
dimensionless x;* value in Eq. (6) was 0.3057. The gradient coefficient is
proportional to the area between the free energy curve and the common
tangent line, such as areas A and B in Fig. 1. After evaluating areas A
and B numerically, we found that the ratio of B to A was 8.1463;
therefore, we used x; = 2.4901 when considering magnetic ordering
effects. To evaluate the interface width for the both cases, we per-
formed 1-D simulation of &« — a’ structure. We achieved the equilibrium
state, which means the concentration profile is entirely stationary and
plotted the profile in Fig. 2. We can measure the interface width using
the method proposed by Cahn [13]. In practice, people measure the
number of grid points within the interface region more intuitively.
When the equilibrium concentration profile of Cr at « phase is 0.18 and
that of the a’ phase is 0.82 then, we assume that when the concentra-
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Fig. 2. Equilibrium concentration profiles of across the phase boundary with
and with out magnetic ordering effect of Fe-Cr system at T = 700K.
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Fig. 3. Plot of % with respect to ¢, where c is the Cr composition (atomic
fraction). The derivative of Eq. (13) was calculated using a finite difference
method. We removed the steep spike in the vicinity of ¢ = 0.56525 and show the
modified curve in green.

<0.82 — (0.82 — 0.18) x 0.1, it becomes 0.244 < c < 0.756. We also
measured the interface width of the « — a’ cases with magnetic or-
dering cases and we found that the interface width is consistently 3 grid
points.

After plotting the partial derivative % (Fig. 3), we found that there
was a steep spike near ¢ = 0.56525 due to the magnetic ordering tran-
sition from a ferromagnetic to a paramagnetic state. To improve the
numerical stability, we removed this rapid change and used the mod-
ified % in Eq. (8) and later. In Fig. 1 (a), the transition was not clearly
observed, therefore, we plotted higher magnified version of Fig. 1 (a)
near the transition at Fig. 1 (b), we confirmed that there is also tran-
sition effect in not only first derivative, but also the free energy itself.

2.3. Performance benchmark

To improve the computational efficiency, we implemented paralle-
lization techniques based on both OpenMP [12] and CUDA [11]. A
semi-implicit Fourier spectral method, as described in the previous
section, was implemented by utilizing FFTW [21] for the OpenMP code
and cuFFT [22] for the CUDA code. For this benchmark, we conducted
2D spinodal decomposition simulations that accounted for magnetic
ordering effects. The system was 1024Ax X 1024Ay in size, and we
measured the time taken to calculate 10, 000 time steps using the Linux
time command, which gives the real elapsed time. Our workstation in-
cluded an Intel i7-8700 3.2 GHz CPU and the time taken decreased with
the number of CPU cores used up to 12 cores.

As depicted in Fig. 4, since i7-8700K CPU has 6 cores, the CPU
shows the saturated performance when we use 6 or more threads. We
compared the efficiencies of the CUDA- and OpenMP-based code on the
same or a comparable computer, and the results obtained are shown in
Fig. 5. We conducted these comparisons for five different numbers of
dimensions, namely 128, 256, 512, 1024, and 2048. Here, a di-
mensionality of 128 (say) means that the system cell size was
128Ax X 128Ay.

As shown in Fig. 5 the computational cost of the CUDA code was
around half in comparison to that of the OpenMP code in all cases,
when comparing CUDA on a GPU with OpenMP on a comparably priced
CPU (NVIDIA GTX-1060 GPU and Intel i7-8700 3.2 GHz CPU). How-
ever, the GTX-1060 GPU only included 6 GB of memory, which could
clearly limit CUDA’s efficiency for 3D simulations.

2.4. Simulation results and analysis

To investigate the effects of magnetic ordering on phase separation
behavior, we performed nine sets of simulations shown in Table 1.
We set the initial Cr concentration using the formula
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Fig. 4. Time consumption for the microstructural evolution simulation de-
pending on number of CPU cores.
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Fig. 5. Time consumption for the microstructural evolution simulation with
parallelized by OpenMP (i7-8700 3.2 GHz CPU) and CUDA (GTX-1050Ti and
GTX-1060).

c(r, t) = ¢y + 0.01 X (rnd — 0.5) where rnd is a random number be-
tween 0 and 1, which is generated by Fortran’s intrinsic random func-
tion, and ¢ is listed in the second column of Table 1.

We also set two other variables, namely the initial average con-
centration and o’ phase fraction. Therefore, cases 1 and 2 began with
identical initial states, as did cases 4 and 5 and 7 and 8. However, as
shown in Fig. 1, the equilibrium concentrations of the @ and a’ phases
changed depending on whether or not the magnetic ordering effects
were considered; therefore, the a’ phase fractions were different for
cases 1 and 2, i.e., 0.305 and 0.316, respectively. We also conducted
additional sets of simulations (cases 3, 6, and 9) with the same a’ phase
fractions as the corresponding cases without magnetic ordering effects
(cases 1, 4, and 7). The simulation cell size was 0.292 um X 0.292 um,
where 0.292 um was 1024 grid points in these simulations.

Since the critical size of stable nuclei is proportional to the inter-
facial energy between the matrix and precipitate [23], it is more than
eight times larger when the magnetic ordering effects are included; for
example, in Fig. 1, the interfacial energy is 8.1463 times higher when
magnetic ordering effects are included. This means that the incubation
time for nucleation is much longer in the presence of magnetic ordering
effects, such as in cases 2 and 3 in comparison with case 1. Since the
nucleation barrier is also significantly higher, we see noticeably less

Computational Materials Science 169 (2019) 109088

Case 1

Case 3

Fig. 6. Plots of the Cr concentration at ¢ = 8156.7s (1.0 X 10° time steps) for
cases 1-3 in Table 1. Herein, there are 21770, 10242, and 10709 o’ precipitates
per um?, respectively, and the average precipitate areas are 14.01, 30.81, and
28.48 nm?.
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Fig. 7. Plots of the number density of o’ precipitates per unit area (um?) for
cases 1-3 in Table 1.

Table 1

Nine sets of simulations for various average initial Cr concentrations with and
without considering the magnetic ordering effects. Since the a’ phase fraction
varied slightly over time, we measured the value at t = 8156.7s.

Case Initial average Magnetic Fraction of a’ Gradient
concentration effect phase coefficient
1 0.385 No 0.305 0.3057
2 0.385 Yes 0.316 2.4901
3 0.377 Yes 0.305 2.4901
4 0.400 No 0.330 0.3057
5 0.400 Yes 0.335 2.4901
6 0.392 Yes 0.330 2.4901
7 0.500 No 0.499 0.3057
8 0.500 Yes 0.468 2.4901
9 0.522 Yes 0.499 2.4901

precipitation in case 2 and 3 in comparison with case 1.

As shown in Fig. 8, in the very early stages of phase separation, the
fraction of a’ is higher in case 1 then that in cases 2 and 3, although this
trend reverses soon. The curves for cases 2 and 3 also intersect after
around 2.5 X 107 sec. since the average initial concentration is slightly
lower in case 3 than that in case 2, the incubation time for nucleation is
longer. On the contrary, since there is less precipitation in case 3, the
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Fig. 8. Plots of average a’ precipitate area for Cases 1,2 and 3 in Table 1.
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Fig. 9. Plots of number density of o’ precipitates per unit area (/um?) for Cases
4,5 and 6 in Table 1.
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Fig. 10. Plots of average a’ precipitate area for Cases 4,5 and 6 in Table 1.

average precipitate area is marginally larger during the transient re-
gime (0.5 X 107 — 2.5 x 107 s), even though it later becomes larger in
case 2. To check that this trend was consistent, we repeated the simu-
lations with different random seeds. Since the «’ phase fraction was
consistently higher in case 5 then that in case 6, we were unable to
observe any intersection between their curves (Fig. 10). We also found
that the precipitate number density curves for cases 5 and 6 (Fig. 9)
mostly overlapped, whereas the average initial concentration was
higher in case 5 then that in case 6.

Miller et al. observed that the «’ precipitates are mostly spherical at
low Cr concentrations but become interconnected as the Cr con-
centration increased [4]. Our simulation results are consistent with this
observation. When the average initial Cr concentration is greater than
0.5 in cases 7-9, the microstructure (Fig. 12) exhibits two distinct
phases rather than being a mixture of matrix and precipitate, whereas
the a’ phase’s morphology is mostly circular, as shown in Figs. 6 and 11.
On the contrary, it exhibits an interconnected microstructure in Fig. 12.
However, for the sake of terminological consistency, we still refer to
closed o' regions as precipitates in Figs. 13 and 14.

In cases of 7-9, no intersections can be observed over time in either

Computational Materials Science 169 (2019) 109088

Case 6

Fig. 11. Plots of Chromium concentration at t = 8156.7 s (1.0 X 10° time steps).
Numbers of a’ precipitates per um? are 21080, 9389 and 9447 and the average
precipitate areas are 15.63 nm?, 35.68 nm? and 34.89 nm? for Cases 4,5 and 6,
respectively.

Case 9

Fig. 12. Plots of Chromium concentration at ¢t = 8156.7 s (1.0 X 10° time steps).
Numbers of a’ precipitates per um? are 1578, 3905 and 1871 and the average
precipitate areas are 315.99 nm?, 119.88 nm? and 266.59 nm? for Cases 7,8 and 9,
respectively.

the precipitate number density plot (Fig. 13) or the average precipitate
area plot (Fig. 14). However, if we compare cases 8 and 9, we see
significant differences in both the precipitate number density and
average precipitate area in these figures. Also, even though the a’ phase
fractions in case 7 and 9 are the same (Fig. 12) and their precipitate
number densities are comparable, the interconnected structures, as
shown in Figs. 7 and 9, are noticeably different from each other.
Therefore, we introduced another metric to quantitatively distinguish
these structures.

As shown in Fig. 15, we draw auxiliary lines in four directions (up,
down, and two diagonals) on the microstructure. Then, we converted
the microstructure into a sharp interface representation where matrix
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Fig. 14. Plots of average a’ precipitate area for Cases 7,8 and 9 in Table 1.

Fig. 15. Microstructure of Case 9 in Fig. 12 with auxiliary lines (blue dashed
line). We counted number of voxels on the auxiliary lines to calculate summed
number of phase boundaries along the line.

regions are assigned the values of 0 and a’ precipitate regions are as-
signed positive integer values. Then, we count the number of transitions
from O to a positive integer or vice versa along each of the auxiliary
lines, summing the results for 10 lines in each direction and plotted the
result in Fig. 16. Now, even though the a’ phase fractions and pre-
cipitate number densities are comparable for case 7 and 9, we see
significant differences in the numbers of phase boundaries along these
lines with the phase boundary density being significantly higher in case
7 than that in case 9. This implies that the two microstructures may
exhibit significant differences in the strengthening effect caused by
hindering dislocation migration at phase boundaries.
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g. 15 for cases 7,8 and 9 in Table 1.

3. Conclusions

Herein, we simulated a set of phase-field models to investigate the
phase separation behavior in the Fe-Cr binary alloy system. When the
average initial concentration was between 0.377 and 0.400, magnetic
ordering effects significantly increased the interfacial energy between
the matrix and precipitated phases, reducing the number of precipitates
while increasing the average precipitate area accordingly. On the
contrary, when we compared two cases with average initial con-
centrations of 0.500 and 0.522, we found that the precipitate number
density decreased significantly as the concentration increased, whereas
the average precipitate area also decreased noticeably. When we
compared two cases with average initial concentrations of 0.500 and
0.522, ignoring magnetic ordering effects in the former case but ac-
counting for them in the latter, we found that their «’ fractions and
precipitate number densities were comparable. However, the density of
phase boundaries along certain auxiliary lines depended significantly
on the presence of magnetic ordering effects, which can noticeably
affect matarial’s mechanical properties.

Data availability

The raw/processed data required to reproduce these findings cannot
be shared at this time as the data also forms part of an ongoing study.
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