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 A B S T R A C T

Elastic interactions are a key driving force in microstructural evolution. While conventional phase-field 
models typically employ Vegard’s law — assuming a linear dependence of lattice parameters on solute 
concentration — this approximation breaks down in concentrated alloys, where the relationship becomes 
inherently nonlinear. In this work, we develop an advanced phase-field model that explicitly incorporates 
nonlinear elastic interactions by capturing the nonlinear dependence of lattice parameters on concentration. 
This enhanced formulation reveals that such nonlinearities can substantially alter the equilibrium concentration 
profiles, leading to more accurate predictions of microstructural behavior.
1. Introduction

The elastic interactions in materials are important because they in-
fluence the microstructural evolution and affect morphology, which de-
termines the mechanical performance of the material [1,2]. Therefore, 
understanding elastic interaction is necessary to predict the behaviors 
of the system that affect the structural integrity in materials.

To understand the elastic interaction in materials, Cahn and Larche 
proposed an analytical model for coherent equilibrium and analyzed 
the elastic effect on phase equilibria in a binary alloy [3]. They 
described analytic solutions through free energy minimization and 
showed the Williams point that a two-phase region does not exist 
due to the elastic interaction. Lee et al. [4] extended the elastic 
interaction theory by applying concentration-dependent misfit strain 
to the Cahn–Larche analysis.

However, previous studies have been limited to linear elastic in-
teraction based on Vegard’s law [5], which assumes that the lattice 
parameter changes linearly with concentration [6–8]. In real binary 
solution materials, the concentration and the lattice parameter are not 
always a linear correlation [9,10]. To explain the nonlinear relation-
ship between the lattice parameter and the concentration, the bowing 
parameter was introduced by Fournet [11].

To investigate the influence of elastic interactions on the bowing 
parameter and microstructural evolution, we conducted phase-field 
simulations that capture both concentration and morphological changes 
across the entire system. While most phase-field models for phase 
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transformations in binary alloys adopt Vegard’s law — assuming a 
linear relationship between concentration and lattice parameter — we 
introduce a model that incorporates a nonlinear concentration–lattice 
parameter correlation. This advanced formulation is implemented using 
the MOOSE (Multiphysics Object Oriented Simulation Environment) 
framework [12], enabling a more realistic representation of elastic 
effects in concentrated alloy systems.

2. Phase-field methods with non-linear lattice parameter

2.1. Phase-field modeling using the Cahn–Hilliard equation

To investigate the effect of elastic interaction, we describe the evo-
lution of the concentration field using the Cahn–Hilliard equation [13,
14]. 
𝜕𝑐(𝐫, 𝑡)

𝜕𝑡
= 𝑀∇2

[

𝛿𝐹 (𝐫, 𝑡)
𝛿𝑐(𝐫, 𝑡)

]

(1)

where 𝑐(𝐫, 𝑡) is the concentration, 𝑀 is chemical mobility, and 𝐹 (𝐫, 𝑡) is 
the total free energy of the system given by: 

𝐹 (𝐫, 𝑡) = ∫𝑉

[

1
𝑉𝑚

(

𝑓 (𝑐(𝐫, 𝑡)) + 1
2
𝜅(∇𝑐(𝐫, 𝑡))2

)

+ 𝑓𝐸𝑙(𝑐(𝐫, 𝑡))
]

𝑑𝑉 (2)

where 𝑓 (𝑐(𝐫, 𝑡)) is the local free energy of the binary solution, 𝜅 is the 
interfacial energy coefficient, 𝑉𝑚 is the molar volume and 𝑓𝐸𝑙(𝑐(𝐫, 𝑡)) is 
the elastic energy density related to lattice mismatch. We consider a 
regular solution model for local free energy.
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Fig. 1. The relationship between concentration and lattice parameter for varying 
bowing parameters.

𝑓 (𝑐(𝐫, 𝑡)) = 𝜇◦
𝑠 𝑐 + 𝜇◦

ℎ(1 − 𝑐) + 𝑅𝑇 [𝑐 ln (𝑐) + (1 − 𝑐) ln (1 − 𝑐)]

+ 𝛺𝑐(1 − 𝑐) (3)

where 𝜇◦
𝑠  and 𝜇◦

ℎ are free energies for solute and host atoms at reference 
state, 𝑅 is the gas constant, 𝑇  is the system’s absolute temperature, and 
𝛺 is the interaction parameter between solute and host atoms.

2.2. The nonlinear relationship between concentration and lattice parameter

The elastic energy density(𝑓𝐸𝑙(𝑐(𝐫, 𝑡))) is directly affected by lat-
tice distortions. Therefore, understanding how the lattice parameter 
varies with concentration is crucial. In the binary system, the lattice 
parameter(𝑎(𝑐)) of a solid solution is determined by the lattice pa-
rameters of the pure solute(𝑎𝑠) and host(𝑎ℎ) atoms, as well as the 
concentration. In 1921, Vegard proposed an equation(𝑎(𝑐) = 𝑐𝑎𝑠 +
(1 − 𝑐)𝑎ℎ) to predict the lattice parameter of a binary solid solution 
by assuming a linear relationship between the lattice parameter of 
the system and the concentration. However, as in previous studies, 
the lattice parameter of metallic solid solutions often deviates from 
Vegard’s law [10]. To explain the non-linearity between the lattice 
parameter and the concentration, Fournet [11] proposed Eq. (4) using 
the bowing parameter(𝜃). 
𝑎(𝑐) = 𝑐𝑎𝑠 + (1 − 𝑐)𝑎ℎ + 𝜃𝑐(1 − 𝑐) (4)

when 𝜃 is zero, the lattice parameter and concentration follow a linear 
relationship consistent with Vegard’s law. For positive 𝜃, the lattice pa-
rameter deviates positively from the linear relationship, while negative 
𝜃 leads to a negative deviation, as shown in Fig.  1. Accordingly, the 
bowing parameter (𝜃) directly determines the extent of deviation from 
Vegard’s law.

2.3. Eigenstrain for nonlinear lattice parameter

The eigenstrain concept introduced by Toshio Mura [15] is used to 
represent inelastic deformations, such as plastic deformations and ther-
mal expansion mismatch. According to recent studies on the coherency 
elastic energy arising from compositional inhomogeneity, as the con-
centration departs from the nominal concentration, the eigenstrain 
exhibits a corresponding increase given by: 
𝜀◦𝑖𝑗 (𝑐(𝐫)) = 𝛿𝑖𝑗𝜀0(𝑐(𝐫))(𝑐(𝐫) − 𝑐0) (5)

where 𝜀◦𝑖𝑗 (𝑐(𝐫)) is the eigenstrain for compositional inhomogeneity, 𝛿𝑖𝑗
is the Kronecker delta function, and 𝜀0 is the lattice mismatch-related 
lattice expansion coefficient, which can be expressed as follows: 

𝜀0(𝑐(𝐫)) =
1 𝑑𝑎(𝑐(𝐫)) (6)

𝑎0 𝑑𝑐(𝐫)

2 
where 𝑎0 is the lattice parameter at nominal concentration(𝑐0). In previ-
ous studies, where the lattice parameter is treated as a function of only 
the host atom, solute atom, and concentration, the lattice expansion 
coefficient is determined as a constant(𝜀0 = 𝑎𝑠−𝑎ℎ

𝑎0
). However, when 

the bowing parameter is considered, the lattice expansion coefficient 
becomes a linear function of concentration, described in Eq. (7). 

𝜀0(𝑐(𝐫)) =
𝑎𝑠 − 𝑎ℎ

𝑎0
+

𝜃(1 − 2𝑐)
𝑎0

(7)

Therefore, the incorporation of the bowing parameter into the 
lattice expansion coefficient provides a more comprehensive represen-
tation of compositional inhomogeneity effects in real metallic binary 
solid solutions.

2.4. The nonlinear lattice parameter with second-order Taylor expansion

To analyze the effects of Vegard’s law and the bowing parameter, 
respectively, we separate the lattice parameter into linear and non-
linear terms using a second-order Taylor expansion. Therefore, the 
lattice parameter is given as follows: 

𝑎(𝑐) ≈ 𝑎𝑇 (𝑐) = 𝑎(𝑐)|𝑐=𝑐0 + 𝑎′(𝑐)|𝑐=𝑐0 (𝑐 − 𝑐0) +
1
2!
𝑎′′(𝑐)|𝑐=𝑐0 (𝑐 − 𝑐0)2 (8)

where 𝑎𝑇 (𝑐) is the lattice parameter expanded using a second-order Tay-
lor expansion. In Eq. (8), 𝑎(𝑐)|𝑐=𝑐0 , represents the lattice parameter at 
the nominal concentration(𝑐0). The parameters 𝑎′(𝑐)|𝑐=𝑐0  and 𝑎′′(𝑐)|𝑐=𝑐0
denote the first and second derivatives of the lattice parameter with 
respect to the nominal concentration(𝑐0).

By substituting the Taylor-expanded lattice parameter(𝑎𝑇 (𝑐)) into 
the definition of the lattice expansion coefficient, 𝜀0(𝑐(𝐫))), the relation-
ship between the lattice expansion coefficient and concentration can be 
derived, as shown in Eq. (9). 

𝜀0(𝑐(𝐫)) ≈
1
𝑎0

𝑑𝑎𝑇 (𝑐(𝐫))
𝑑𝑐(𝐫)

=
𝑎𝑠 − 𝑎ℎ

𝑎0
+

𝜃(1 − 2𝑐0)
𝑎0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜀0(𝐼)

− 2𝜃
𝑎0

⏟⏟⏟
𝜀0(𝐼𝐼)

(𝑐(𝐫) − 𝑐0) (9)

The first term in Eq. (9), 𝑎𝑠−𝑎ℎ𝑎0
, represents the linear contribution to 

the lattice expansion coefficient, consistent with Vegard’s law, which 
assumes a direct proportional relationship between the lattice param-
eter and solute concentration. On the other hand, the terms 𝜃(1−2𝑐0)𝑎0

−
2𝜃
𝑎0
(𝑐(𝐫) − 𝑐0) represent deviations from Vegard’s law introduced by the 

bowing parameter (𝜃), reflecting the non-linear relationship between 
the lattice parameter and the concentration.

In Eq. (9), 𝜀0(𝐼) and 𝜀0(𝐼𝐼) denote the lattice expansion coefficients 
related to the linear and non-linear contributions, respectively. When 
the bowing parameter(𝜃) is zero, the lattice parameter becomes lin-
early proportional to the concentration, reducing the eigenstrain to 
the same form as in previous studies [6,7]. Therefore, accounting 
for the non-linear relationship between the lattice parameter and the 
concentration, the eigenstrain is expressed as: 
𝜀◦𝑖𝑗 (𝑐(𝐫)) = 𝛿𝑖𝑗{𝜀0(𝐼) + 𝜀0

(𝐼𝐼)(𝑐(𝐫) − 𝑐0)}(𝑐(𝐫) − 𝑐0) (10)

2.5. Elastic energy contribution to total free energy

Elastic interaction plays a central role in determining the total 
free energy of materials, particularly in systems where mechanical 
deformation interacts with phase transformations and microstructural 
evolution [2]. Therefore, it is crucial to understand the impact of elastic 
energy on the system.

To calculate the elastic energy density, we apply the Khachaturyan’s 
strain interpolation scheme (KHS) [16], which interpolates the stiffness 
tensor and the misfit strain to create a global representation of the 
system. The elastic energy density is expressed as: 

𝑓 (𝑐(𝐫)) = 1𝐶𝐾𝐻𝑆 (𝑐)𝜀𝑒𝑙(𝐫)𝜀𝑒𝑙 (𝐫) (11)
𝐸𝑙 2 𝑖𝑗𝑘𝑙 𝑖𝑗 𝑘𝑙
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where 𝐶𝐾𝐻𝑆
𝑖𝑗𝑘𝑙 (𝑐) is the interpolated stiffness tensor defined by: 

𝐶𝐾𝐻𝑆
𝑖𝑗𝑘𝑙 (𝑐(𝐫)) = 𝐶𝑠𝑜𝑙𝑢𝑡𝑒

𝑖𝑗𝑘𝑙 𝑐(𝐫) + 𝐶ℎ𝑜𝑠𝑡
𝑖𝑗𝑘𝑙 (1 − 𝑐(𝐫)) (12)

and 𝜀𝑖𝑗 (𝐫) is the total strain, given as: 

𝜀𝑖𝑗 (𝐫) = 𝜀ℎ𝑜𝑚𝑖𝑗 + 𝜀ℎ𝑒𝑡𝑖𝑗 (𝐫) (13)

where 𝜀ℎ𝑜𝑚𝑖𝑗  denotes the homogeneous strain, representing the macro-
scopic deformation of the system’s shape. The homogeneous strain can 
be expressed as: 

𝜀ℎ𝑜𝑚𝑖𝑗 = ∫𝑉
𝛿𝜀𝑖𝑗 (𝐫)𝑑𝑉 = 0 (14)

On the other hand, 𝜀ℎ𝑒𝑡𝑖𝑗 (𝐫) represents the heterogeneous strain, 
which is determined by the displacement fields. The heterogeneous 
strain can be described as: 

𝜀ℎ𝑒𝑡𝑖𝑗 (𝐫) = 1
2

(

𝜕𝜇𝑖
𝜕𝑟𝑗

+
𝜕𝜇𝑗
𝜕𝑟𝑖

)

(15)

where 𝜇𝑗 represents the displacement field 𝑖th component at position 
𝑟. Therefore, elastic energy density in an elastically inhomogeneous 
system is given by: 

𝐹𝐸𝑙 =
1
2
𝐶𝐾𝐻𝑆
𝑖𝑗𝑘𝑙 (𝜀𝑖𝑗 (𝐫) − 𝜀0𝑖𝑗 (𝐫))(𝜀𝑘𝑙(𝐫) − 𝜀0𝑘𝑙(𝐫)) (16)

To maintain the mechanical equilibrium, the system must satisfy: 
∇ ⋅ 𝜎𝑖𝑗 (𝐫) = 0 (17)

where 𝜎𝑖𝑗 (𝐫)(= 𝐶𝐾𝐻𝑆
𝑖𝑗𝑘𝑙 𝜀𝑒𝑙𝑖𝑗 ) is the local stress field.

2.6. Computational details

Our simulations employ non-dimensional values to enhance the 
computational efficiency. The non-dimensional total free energy,
𝐹 ∗(𝐫, 𝑡), is expressed as: 

𝐹 ∗(𝐫, 𝑡) = ∫𝑉

[

𝑓 ∗(𝑐(𝐫, 𝑡)) + 1
2
𝜅∗(∇𝑐(𝐫, 𝑡))2 + 𝑓 ∗

𝐸𝑙(𝑐(𝐫, 𝑡))
]

𝑑𝑉 (18)

where 𝑓 ∗(𝑐(𝐫, 𝑡)) = 𝑓 (𝑐(𝐫, 𝑡))∕(𝑅𝑇 ), non-dimensional interfacial energy 
coefficient is 𝜅∗ = 1

6𝛺∕(𝑅𝑇 ) and 𝑓 ∗
𝐸𝑙(𝑐(𝐫, 𝑡)) = 𝑉𝑚𝑓𝐸𝑙(𝑐(𝐫, 𝑡))∕(𝑅𝑇 ).

To evaluate the microstructure evolution in the real metallic system, 
we considered properties in the Fe–Cr system at 673.15 K, a temper-
ature at which the 𝛼 and 𝛼′ phases clearly separate, causing the well 
known 475 ◦C embrittlement in Fe–Cr system [17–19]. The interaction 
parameter of Fe–Cr system is 𝛺 = (20500 − 9.68 × 𝑇 ) J∕mol in Eq. (3). 
The molar volume is 𝑉𝑚 = 1.4 × 10−5 m3∕mol. The elastic constants in 
the Fe–Cr system are 𝐶Fe

11 = 205 GPa, 𝐶Fe
12 = 129 GPa, 𝐶Fe

44 = 109 GPa at 
672 K and 𝐶Cr

11 = 365 GPa, 𝐶Cr
12 = 115 GPa, and 𝐶Cr

44 = 96 GPa at 650 
K[20,21].

We consider five cases of bowing parameters with the corresponding 
lattice parameter variations shown in Fig.  2. To investigate the effects 
of the bowing parameter (𝜃), appropriate values were selected to 
represent varying deviations from Vegard’s law. Five cases, including 
positive values (cases 4, 5), negative values (cases 1, 2), and zero (case 
3) bowing parameter values, were analyzed to explore their impacts on 
the lattice parameter profiles, as shown in Fig.  2.

The initial condition assumes the presence of an inclusion within 
the matrix, where the concentrations are set to 14.5 at% in the matrix 
and 85.5 at% in the inclusion, as shown in Fig.  3. The simulation cell 
size is 200𝛥𝑥 × 200𝛥𝑦. The inclusion has a radius of 𝑟 = 55.7𝛥𝑥, 
with the nominal concentration in all cases is 31.7 at%. Moreover, 
periodic boundary conditions for concentration and Dirichlet boundary 
conditions for displacement are applied along both Cartesian axes.

3. Simulation results

We observed equilibrium concentration, precipitate size, and precip-
itate morphology in the five cases with different bowing parameters.
3 
Fig. 2. The lattice parameter corresponding to concentration for each case. Region A 
corresponds to the area with significant lattice parameter changes at low concentrations, 
whereas Region B indicates significant changes at high concentrations.

As shown in Fig.  4, the shape evolution of an isolated particle 
was determined by solving the Cahn–Hilliard diffusion equation, in-
corporating the effects of elastic stress. Without elastic stress in the 
system (Fig.  4(a)), the equilibrium shape formed as an isotropic circle. 
However, when elastic interaction was included (Fig.  4(b)–(f)), the 
equilibrium shape transitioned to a cubic morphology with rounded 
corners, driven by the anisotropic distribution of elastic strain energy.

The particle size was analyzed for five simulation cases to evaluate 
the influence of the bowing parameter (𝜃) and elastic interaction on 
the equilibrium morphology. In Fig.  4 and Table  1, the particle size 
decreased with an increase in the bowing parameter. Moreover, the 
coherent equilibrium concentration within the inclusion was lower than 
the incoherent equilibrium concentration, driven by the elastic strain 
energy. As observed in region B of Fig.  2, the elastic driving force 
( 𝜕𝐹 (𝐫,𝑡)

𝜕𝑐 ) decreased with an increase in the bowing parameter (as slope 
decreases). Consequently, the coherent equilibrium concentration ap-
proached the incoherent equilibrium concentration due to the reduced 
influence of the elastic strain energy.

The total concentration of the system must be conserved. Con-
sidering elastic interaction, the equilibrium concentration within the 
inclusion increases as the bowing parameter increases, because of the 
contribution of elastic energy to the total free energy. Therefore, the 
particle size decreases as the bowing parameter increases, as shown in 
Table  1

As shown in Fig.  5, when the elastic interaction did not contribute 
to the total free energy, the concentration within the inclusion was 85.5 
at%, while the matrix concentration was 14.5 at%. In case 3, where 
a linear relationship between lattice parameter and concentration, the 
symmetric reduction in the miscibility gap shifted towards each other 
under the influence of elastic interaction.

For a negative bowing parameter (case 1 and case 2), the concentra-
tion change in inclusion was more pronounced than that in the matrix. 
However, when the bowing parameter was positive (case 4 and case 5), 
the matrix’s concentration change was more significant than that in the 
inclusion. Moreover, as the absolute value of the bowing parameter(|𝜃|) 
increased, the equilibrium concentration change induced by the elastic 
interaction became more pronounced. Therefore, the negative bowing 
parameter led to a high equilibrium dominant miscibility gap reduc-
tion, whereas the positive bowing parameter caused a low equilibrium 
dominant miscibility gap reduction.

The asymmetric reduction in the miscibility gap was driven by the 
slope variations of the lattice parameter, as shown in Fig.  1. In case 1 
and case 2, the dominant change occurred at higher concentrations (Re-
gion B), where the slope increased significantly. In contrast, case 4 and 
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Fig. 3. Simulation initial condition illustrating an inclusion within the matrix. The equilibrium concentrations are set to 14.5 at% in the matrix and 85.5 at% in the inclusion.
Table 1
The bowing parameters (𝜃), particle size, and concentration in the inclusion for five simulation cases.
 Case Bowing parameter (𝜃) Particle size Concentration in the inclusion 
 Without elastic interaction 4769.97𝛥𝑥𝛥𝑦 0.855  
 1 −0.002 nm 6310.52𝛥𝑥𝛥𝑦 0.487  
 2 −0.001 nm 5078.08𝛥𝑥𝛥𝑦 0.577  
 3 0 nm 3977.42𝛥𝑥𝛥𝑦 0.773  
 4 0.001 nm 3319.36𝛥𝑥𝛥𝑦 0.852  
 5 0.002 nm 2353.84𝛥𝑥𝛥𝑦 0.832  
Fig. 4. The concentration field for the five cases with different bowing parameters at 
equilibrium state. (a) represents the case without elastic energy density, (b) corresponds 
to case 1, (c) to case 2, (d) to case 3, (e) to case 4, and (f) to case 5.

case 5 showed significant deviations at lower concentrations(Region A) 
due to the steeper slope at low concentrations.

As 𝜃 increased from case 1 to case 4, the concentration in the inclu-
sion increased. In case 4, the inclusion concentration became almost 
identical to the upper limit, which was the concentration observed 
without elastic interaction. On the other hand, the concentration in the 
matrix decreased as 𝜃 increased from case 1 to case 3. From case 3 
to case 5, the concentration increased as 𝜃 increases. When comparing 
case 4 and case 5, the increase in matrix concentration due to the 
increase in 𝜃 became more pronounced, which appeared to have caused 
a slight decrease in inclusion concentration.

To validate the simulation results, including equilibrium concen-
trations and reduction of the asymmetric miscibility gap, analytical 
solutions were derived and compared with the phase-field simulation 
results to ensure consistency. We considered a binary regular solution 
model described by a local incoherent free energy density (𝑓𝐿𝑜𝑐𝑎𝑙(𝑐)) 
and an elastic energy density (𝑓 (𝜀 , 𝑐)). Therefore, the free energy of 
𝐸𝑙 𝑖𝑗

4 
the system is 𝐹 = 𝑓𝐿𝑜𝑐𝑎𝑙(𝑐) + 𝑓𝐸𝑙(𝜀𝑖𝑗 , 𝑐) without interface. 

𝑓𝐿𝑜𝑐𝑎𝑙(𝑐) = 𝑅𝑇 (𝑐 ln 𝑐 + (1 − 𝑐) ln (1 − 𝑐)) +𝛺0𝑐(1 − 𝑐) (19)

𝑓𝐸𝑙(𝜀𝑖𝑗 , 𝑐) =
1
2
𝐶𝑖𝑗𝑘𝑙{𝜀𝑖𝑗 − 𝛿𝑖𝑗𝜀0(𝑐 − 𝑐0)}{𝜀𝑘𝑙 − 𝛿𝑘𝑙𝜀0(𝑐 − 𝑐0)} (20)

where 𝛺0 is the interaction parameter in binary alloy independent 
temperature in (19). We assume that 𝜀𝑖𝑗 = 0, and consider 𝜀0𝑖𝑗 =
𝑎𝑠−𝑎ℎ
𝑎0

+ 𝜃(1−2𝑐)
𝑎0

 in the Eq. (7). The partial free energies are given by: 

𝜕𝑓𝐿𝑜𝑐𝑎𝑙(𝑐)
𝜕𝑐

= 𝑅𝑇 ln
(

𝑐
1 − 𝑐

)

+𝛺0(1 − 2𝑐) (21)

𝜕𝑓𝐸𝑙(𝑐)
𝜕𝑐

|

|

|

|𝜀𝑖𝑗
= −

{

𝜀0 −
2𝜃
𝑎0

(𝑐 − 𝑐0)
}

𝜎𝑗𝑗 (22)

Using Eqs. (21) and (22), we computed the phase boundary (solvus 
curve) that defines the solubility limit in the phase diagram at a given 
normalized temperature 𝑅𝑇 ∕𝛺, and showed that they vary significantly 
with the bowing parameter (𝜃), under assumption 𝜀𝑖𝑗 = 0, as shown 
in Fig.  6. Specifically, elastic interactions induced by the bowing pa-
rameter cause asymmetric shifts in equilibrium concentrations, leading 
to more pronounced changes on the inclusion side (higher concentra-
tion) than on the matrix side (lower concentration). Therefore, these 
analytical predictions show qualitative agreement with our simulation 
results.

4. Conclusions

This study demonstrates that the bowing parameter, which quan-
tifies the nonlinear relationship between the lattice parameter and 
concentration, plays a critical role in creating an asymmetric reduction 
in equilibrium concentrations between the matrix and the precipi-
tate. As the bowing parameter increases, the equilibrium concentration 
within the inclusion approaches the incoherent equilibrium concen-
tration as a result of the redistribution of elastic strain energy. An 
increase in the bowing parameter also leads to a reduction in particle 
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Fig. 5. Concentration profiles were obtained using the phase-field method for various cases. The profiles are shown from the center of the inclusion to the matrix boundary along 
(a) [10]- and (b) [11]-directions.
Fig. 6. Phase diagram showing the effect of elastic interactions on phase boundaries. 
The black line corresponds to the incoherent case (no elastic interaction(𝑓𝐸𝑙 = 0)). 
Colored lines represent coherent cases corresponding to different 𝜃 values: red(𝜃 = 0.01), 
green(𝜃 = 0), and blue(𝜃 = −0.01).

size, reflecting the interplay between the elastic interaction and the 
conservation of total concentration.

Moreover, a negative bowing parameter results in a more significant 
concentration change in the precipitate compared to the matrix, while 
a positive bowing parameter shifts the dominant change to the matrix. 
In particular, the magnitude of the bowing parameter amplifies the 
asymmetry in equilibrium concentration changes between the matrix 
and the precipitate.
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